Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Total Environ ; 875: 162611, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2255129

ABSTRACT

Wastewater surveillance (WWS) has been globally recognised to be a useful tool in quantifying SARS-CoV-2 RNA at the community and residential levels without biases associated with case-reporting. The emergence of variants of concern (VOCs) have given rise to an unprecedented number of infections even though populations are increasingly vaccinated. This is because VOCs have been reported to possess higher transmissibility and can evade host immune responses. The B.1.1.529 lineage (Omicron) has severely disrupted global plans to return to normalcy. In this study, we developed an allele-specific (AS) RT-qPCR assay which simultaneously targets the stretch of deletions and mutations in the spike protein from position 24-27 for quantitative detection of Omicron BA.2. Together with previous assays that detect mutations associated with Omicron BA.1 (deletion at position 69 and 70) and all Omicron (mutation at position 493 and 498), we report the validation and time series of these assays from September 2021 to May 2022 using influent samples from two wastewater treatment plants and across four University campus sites in Singapore. Viral RNA concentrations at the treatment plants corroborate with locally reported clinical cases, AS RT-qPCR assays revealed co-incidence of Omicron BA.1 and BA.2 on 12 January 2022, almost two months after initial BA.1 detection in South Africa and Botswana. BA.2 became the dominant variant by the end of January 2022 and completely displaced BA.1 by mid-March 2022. University campus sites were similarly positive for BA.1 and/or BA.2 in the same week as first detection at the treatment plants, where BA.2 became rapidly established as the dominant lineage within three weeks. These results corroborate clinical incidence of the Omicron lineages in Singapore and indicate minimal silent circulation prior to January 2022. The subsequent simultaneous spread of both variant lineages followed strategic relaxation of safe management measures upon meeting nationwide vaccination goals.


Subject(s)
COVID-19 , Humans , Incidence , RNA, Viral , SARS-CoV-2 , Singapore , Universities , Wastewater , Wastewater-Based Epidemiological Monitoring
2.
Environ Int ; 171: 107718, 2023 01.
Article in English | MEDLINE | ID: covidwho-2165276

ABSTRACT

SARS-CoV-2 wastewater-based surveillance (WBS) offers a tool for cost-effective oversight of a population's infections. In the past two years, WBS has proven to be crucial for managing the pandemic across different geographical regions. However, the changing context of the pandemic due to high levels of COVID-19 vaccination warrants a closer examination of its implication towards SARS-CoV-2 WBS. Two main questions were raised: 1) Does vaccination cause shedding of viral signatures without infection? 2) Does vaccination affect the relationship between wastewater and clinical data? To answer, we review historical reports of shedding from viral vaccines in use prior to the COVID-19 pandemic including for polio, rotavirus, influenza and measles infection and provide a perspective on the implications of different COVID-19 vaccination strategies with regard to the potential shedding of viral signatures into the sewershed. Additionally, we reviewed studies that looked into the relationship between wastewater and clinical data and how vaccination campaigns could have affected the relationship. Finally, analyzing wastewater and clinical data from the Netherlands, we observed changes in the relationship concomitant with increasing vaccination coverage and switches in dominant variants of concern. First, that no vaccine-derived shedding is expected from the current commercial pipeline of COVID-19 vaccines that may confound interpretation of WBS data. Secondly, that breakthrough infections from vaccinated individuals contribute significantly to wastewater signals and must be interpreted in light of the changing dynamics of shedding from new variants of concern.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring , Vaccination
3.
ISME communications ; 2(1), 2022.
Article in English | EuropePMC | ID: covidwho-2092664

ABSTRACT

The human population has doubled in the last 50 years from about 3.7 billion to approximately 7.8 billion. With this rapid expansion, more people live in close contact with wildlife, livestock, and pets, which in turn creates increasing opportunities for zoonotic diseases to pass between animals and people. At present an estimated 75% of all emerging virus-associated infectious diseases possess a zoonotic origin, and outbreaks of Zika, Ebola and COVID-19 in the past decade showed their huge disruptive potential on the global economy. Here, we describe how One Health inspired environmental surveillance campaigns have emerged as the preferred tools to monitor human-adjacent environments for known and yet to be discovered infectious diseases, and how they can complement classical clinical diagnostics. We highlight the importance of environmental factors concerning interactions between animals, pathogens and/or humans that drive the emergence of zoonoses, and the methodologies currently proposed to monitor them—the surveillance of wastewater, for example, was identified as one of the main tools to assess the spread of SARS-CoV-2 by public health professionals and policy makers during the COVID-19 pandemic. One-Health driven approaches that facilitate surveillance, thus harbour the potential of preparing humanity for future pandemics caused by aetiological agents with environmental reservoirs. Via the example of COVID-19 and other viral diseases, we propose that wastewater surveillance is a useful complement to clinical diagnosis as it is centralized, robust, cost-effective, and relatively easy to implement.

4.
Water Res ; 223: 118904, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1956371

ABSTRACT

Arboviral diseases are caused by a group of viruses spread by the bite of infected arthropods. Amongst these, dengue, Zika, west nile fever and yellow fever cause the greatest economic and social impact. Arboviral epidemics have increased in frequency, magnitude and geographical extent over the past decades and are expected to continue increasing with climate change and expanding urbanisation. Arboviral prevalence is largely underestimated, as most infections are asymptomatic, nevertheless existing surveillance systems are based on passive reporting of loosely defined clinical syndromes with infrequent laboratory confirmation. Wastewater-based surveillance (WBS), which has been demonstrated to be useful for monitoring diseases with significant asymptomatic populations including COVID19 and polio, could be a useful complement to arboviral surveillance. We review the current state of knowledge and identify key factors that affect the feasibility of monitoring arboviral diseases by WBS to include viral shedding loads by infected persons, the persistence of shed arboviruses and the efficiency of their recovery from sewage. We provide a simple model on the volume of wastewater that needs to be processed for detection of arboviruses, in face of lower arboviral shedding rates. In all, this review serves to reflect on the key challenges that need to be addressed and overcome for successful implementation of arboviral WBS.


Subject(s)
Arbovirus Infections , Arboviruses , COVID-19 , Zika Virus Infection , Zika Virus , Arbovirus Infections/diagnosis , Arbovirus Infections/epidemiology , Humans , Sewage , Wastewater , Wastewater-Based Epidemiological Monitoring , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology
5.
Water Res ; 219: 118535, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1819627

ABSTRACT

Wastewater-based surveillance (WBS) has been widely used as a public health tool to monitor the emergence and spread of SARS-CoV-2 infections in populations during the COVID-19 pandemic. Coincident with the global vaccination efforts, the world is also enduring new waves of SARS-CoV-2 variants. Reinfections and vaccine breakthroughs suggest an endemic future where SARS-CoV-2 continues to persist in the general population. In this treatise, we aim to explore the future roles of wastewater surveillance. Practically, WBS serves as a relatively affordable and non-invasive tool for mass surveillance of SARS-CoV-2 infection while minimizing privacy concerns, attributes that make it extremely suited for its long-term usage. In an endemic future, the utility of WBS will include 1) monitoring the trend of viral loads of targets in wastewater for quantitative estimate of changes in disease incidence; 2) sampling upstream for pinpointing infections in neighborhoods and at the building level; 3) integrating wastewater and clinical surveillance for cost-efficient population surveillance; and 4) genome sequencing wastewater samples to track circulating and emerging variants in the population. We further discuss the challenges and future developments of WBS to reduce inconsistencies in wastewater data worldwide, improve its epidemiological inference, and advance viral tracking and discovery as a preparation for the next viral pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
6.
Sci Total Environ ; 826: 154024, 2022 Jun 20.
Article in English | MEDLINE | ID: covidwho-1703955

ABSTRACT

Wastewater-based surveillance has been widely used as a non-intrusive tool to monitor population-level transmission of COVID-19. Although various approaches are available to concentrate viruses from wastewater samples, scalable methods remain limited. Here, we sought to identify and evaluate SARS-CoV-2 virus concentration protocols for high-throughput wastewater testing. A total of twelve protocols for polyethylene glycol (PEG) precipitation and four protocols for ultrafiltration-based approaches were evaluated across two phases. The first phase entailed an initial evaluation using a small sample set, while the second phase further evaluated five protocols using wastewater samples of varying SARS-CoV-2 concentrations. Permutations in the pre-concentration, virus concentration and RNA extraction steps were evaluated. Among PEG-based methods, SARS-CoV-2 virus recovery was optimal with 1) the removal of debris prior to processing, 2) 2 h to 24 h incubation with 8% PEG at 4 °C, 3) 4000 xg or 14,000 xg centrifugation, and 4) a column-based RNA extraction method, yielding virus recovery of 42.4-52.5%. Similarly, the optimal protocol for ultrafiltration included 1) the removal of debris prior to processing, 2) ultrafiltration, and 3) a column-based RNA extraction method, yielding a recovery of 38.2%. This study also revealed that SARS-CoV-2 RNA recovery for samples with higher virus concentration were less sensitive to changes in the PEG method, but permutations in the PEG protocol could significantly impact virus yields when wastewater samples with lower SARS-CoV-2 RNA were used. Although both PEG precipitation and ultrafiltration methods resulted in similar SARS-CoV-2 RNA recoveries, the former method is more cost-effective while the latter method provided operational efficiency as it required a shorter turn-around-time (PEG precipitation, 9-23 h; Ultrafiltration, 5 h). The decision on which method to adopt will thus depend on the use-case for wastewater testing, and the need for cost-effectiveness, sensitivity, operational feasibility and scalability.


Subject(s)
COVID-19 , Viruses , Humans , RNA, Viral , SARS-CoV-2/genetics , Ultrafiltration , Wastewater
7.
Sci Total Environ ; 805: 150121, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1386609

ABSTRACT

Current estimates of COVID-19 prevalence are largely based on symptomatic, clinically diagnosed cases. The existence of a large number of undiagnosed infections hampers population-wide investigation of viral circulation. Here, we quantify the SARS-CoV-2 concentration and track its dynamics in wastewater at a major urban wastewater treatment facility in Massachusetts, between early January and May 2020. SARS-CoV-2 was first detected in wastewater on March 3. SARS-CoV-2 RNA concentrations in wastewater correlated with clinically diagnosed new COVID-19 cases, with the trends appearing 4-10 days earlier in wastewater than in clinical data. We inferred viral shedding dynamics by modeling wastewater viral load as a convolution of back-dated new clinical cases with the average population-level viral shedding function. The inferred viral shedding function showed an early peak, likely before symptom onset and clinical diagnosis, consistent with emerging clinical and experimental evidence. This finding suggests that SARS-CoV-2 concentrations in wastewater may be primarily driven by viral shedding early in infection. This work shows that longitudinal wastewater analysis can be used to identify trends in disease transmission in advance of clinical case reporting, and infer early viral shedding dynamics for newly infected individuals, which are difficult to capture in clinical investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Virus Shedding , Wastewater
8.
Water Res ; 202: 117400, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1294290

ABSTRACT

Wastewater-based disease surveillance is a promising approach for monitoring community outbreaks. Here we describe a nationwide campaign to monitor SARS-CoV-2 in the wastewater of 159 counties in 40 U.S. states, covering 13% of the U.S. population from February 18 to June 2, 2020. Out of 1,751 total samples analyzed, 846 samples were positive for SARS-CoV-2 RNA, with overall viral concentrations declining from April to May. Wastewater viral titers were consistent with, and appeared to precede, clinical COVID-19 surveillance indicators, including daily new cases. Wastewater surveillance had a high detection rate (>80%) of SARS-CoV-2 when the daily incidence exceeded 13 per 100,000 people. Detection rates were positively associated with wastewater treatment plant catchment size. To our knowledge, this work represents the largest-scale wastewater-based SARS-CoV-2 monitoring campaign to date, encompassing a wide diversity of wastewater treatment facilities and geographic locations. Our findings demonstrate that a national wastewater-based approach to disease surveillance may be feasible and effective.


Subject(s)
COVID-19 , SARS-CoV-2 , Disease Outbreaks , Humans , RNA, Viral , Wastewater
9.
Water Res X ; 11: 100080, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-967700

ABSTRACT

Capsid integrity quantitative PCR (qPCR), a molecular detection method for infectious viruses combining azo dye pretreatment with qPCR, has been widely used in recent years; however, variations in pretreatment conditions for various virus types can limit the efficacy of specific protocols. By identifying and critically synthesizing forty-one recent peer-reviewed studies employing capsid integrity qPCR for viruses in the last decade (2009-2019) in the fields of food safety and environmental virology, we aimed to establish recommendations for the detection of infectious viruses. Intercalating dyes are effective measures of viability in PCR assays provided the viral capsid is damaged; viruses that have been inactivated by other causes, such as loss of attachment or genomic damage, are less well detected using this approach. Although optimizing specific protocols for each virus is recommended, we identify a framework for general assay conditions. These include concentrations of ethidium monoazide, propidium monoazide or its derivates between 10 and 200 µM; incubation on ice or at room temperature (20 - 25 °C) for 5-120 min; and dye activation using LED or high light (500-800 Watts) exposure for periods ranging from 5 to 20 min. These simple steps can benefit the investigation of infectious virus transmission in routine (water) monitoring settings and during viral outbreaks such as the current COVID-19 pandemic or endemic diseases like dengue fever.

10.
Water Res ; 184: 116181, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-641080

ABSTRACT

Worldwide, clinical data remain the gold standard for disease surveillance and tracking. However, such data are limited due to factors such as reporting bias and inability to track asymptomatic disease carriers. Disease agents are excreted in the urine and feces of infected individuals regardless of disease symptom severity. Wastewater surveillance - that is, monitoring disease via human effluent - represents a valuable complement to clinical approaches. Because wastewater is relatively inexpensive and easy to collect and can be monitored at different levels of population aggregation as needed, wastewater surveillance can offer a real-time, cost-effective view of a community's health that is independent of biases associated with case-reporting. For SARS-CoV-2 and other disease-causing agents we envision an aggregate wastewater-monitoring system at the level of a wastewater treatment plant and exploratory or confirmatory monitoring of the sewerage system at the neighborhood scale to identify or confirm clusters of infection or assess impact of control measures where transmission has been established. Implementation will require constructing a framework with collaborating government agencies, public or private utilities, and civil society organizations for appropriate use of data collected from wastewater, identification of an appropriate scale of sample collection and aggregation to balance privacy concerns and risk of stigmatization with public health preservation, and consideration of the social implications of wastewater surveillance.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Wastewater , COVID-19 , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL